Difference Between Nucleophile vs Electrophile

Difference Between Nucleophile vs Electrophile

Organic chemistry is one of the most interesting aspects of science. It deals with the structure, properties, composition, reaction, and preparation of carbon-containing compounds. It is further broken down into simpler concepts, two of which we will be comparing today to show how they differ from the other.

Our focus would be on the difference between electrophile and nucleophile, what they are, how they are different from the other, and what role they play in the process of electron sharing and bonding.

Definition of Nucleophile

A nucleophile is a chemical that can donate electron pairs to another substance. It can also be defined as a reagent comprising a lone electron pair atom. What these definitions mean is that substances under this category have more than enough electrons, and as such, are looking for ways to give some out. For giving, these substances are most compatible with those that are deficient in electrons.

In comparing electrophile vs nucleophile, one can see that these two are sort of the opposite of each other. The former seeks from the latter while the latter is always willing to give to the former. The latter is referred to as the Lewis base while the former is the Lewis acid.

The term was coined from two other words, “nucleo” and “phile,” which mean “nucleus” and “loving” respectively. They are negatively and neutrally charged, which is why they can donate electrons in the first place. It is also worth mentioning that the movement of the electrons depends on the density. Typically, they would move from the region of low to high densities.

Definition of Electrophile

An electrophile is any chemical specie that accepts an electron pair by forming covalent bonds with an electron-rich specie. In a simpler term, it can also be defined as an electron pair acceptor.

In a chemical reaction, they fundamentally seek another element, maybe an atom or molecule, which contains an electron pair that is available for bonding. Because of this ability, they are also referred to as Lewis acid.

Aside from their ability to seek other chemical species, a lot of these compounds can also donate protons. The ones that can donate protons are known as Bronsted acids. These electron pair receptors are characterized by atoms and molecules that are either positively or neutrally charged. They also have free orbitals to hold incoming electrons.

In comparing nucleophile vs electrophile, it is important to understand how these substances are formed. The latter is created when the octet rule is not obeyed by a chemical compound.

According to this rule, the tendency of atoms to have eight electrons in their outer shell predicts their ability to bond with other atoms. The latter can also be created if there is a positive charge that needs to be neutralized to achieve stability.

Main Differences Between Nucleophile vs Electrophile

This section summarizes the key differences between these terms based on their unique factors.

Basis of ComparisonNucleophileElectrophile
DefinitionAny chemical specie that can donate electron pairs to another substanceAny chemical specie that accepts an electron pair by forming covalent bonds with an electron-rich specie. In a simpler term, it can also be defined as an electron pair acceptor
How it worksDonates a pair of an electron to form a covalent bondAccepts a pair of an electron to form a covalent bond
Also known asLewis baseLewis acid
ProcessNucleophilic addition and nucleophilic substitution reactionsElectrophilic addition and electrophilic substitution reactions
Electron levelRichDeficient
ChargeEither negatively or neutrally chargedEither positively or neutrally charged
ExamplesHalogen anions, hydroxide ion, the cyanide, water, and ammoniaHydronium ion, boron trifluoride, aluminum chloride, the halogen molecules fluorine, chlorine, bromine, and iodine

Difference Between Nucleophile and Electrophile: Conclusion

Now that we have an understanding of the difference between nucleophile and electrophile, we can conclude that the latter accepts from the former and vice versa. The two work hand in hand with each other. Though these two depend on each other, there needs to be a chemical reaction between than before there is any donation or acceptance of electrons.